
 

Computer Science and Engineering 
University of Nevada, Reno 

  
  
  
  
  

   
  

NRDC Quality Assurance Application 
  
  
  
  
 

Team 9: 
Brianna Blain-Castelli 
Christopher Eichstedt 

Matthew Johnson 
Nicholas Jordy 

  
  

Instructors: 
 Dr. Sergiu Dascalu 

Devrin Lee 
  
  

External Advisors: 
Connor Scully-Allison 

Vinh Le 
  
  
  
  
  
 

 ​11/19/18  

 



1. Table of Contents 
 

2. Abstract 
3. Introduction 
4. High-level and Medium-level Design 
5. Detailed Design  
6. Initial hardware design 
7. User interface design 
8. Glossary 
9. Contribution of team members 

3 
3 
4 

12 
15 
16 
20 
21 

 
 

  

2 



2. Abstract 
 
The NRDC QA Application is a cross-platform mobile and web application. It is being designed               
as a generalized, user-facing tool for recording metadata, but with a more specific goal of aiding                
NEXUS site technicians for better efficiency in the field. The current process has NEXUS site               
technicians physically recording data in notebooks before transferring it into a central database.             
This paper describes how such an application could be designed through detailed UML diagrams              
and descriptions of necessary classes and functions.  
 
3. Introduction 
 
The 2018-2019 Senior Project’s Team 9 has begun development on a web-based Quality             
Assurance (QA) application for NEXUS affiliated technicians who visit remote research sites            
throughout Nevada. Currently, the only option available to technicians for recording QA            
information is using physical notebooks. Technicians are then required to manually enter data             
collected into a computer upon their return. This can lead to inaccurate data entry due to factors                 
such as human or documentation error. This application will allow a technician to enter              
information regarding quality assurance into given data fields, regardless of a connection to the              
internet. When the application is connected it will synchronize the data recorded to a central               
server. This will make the entire process of recording data more efficient. 
 
The application will use an ontology which acts as a graph data structure that tells the application                 
how to format its data fields. When the technician enters information and the application is not                
connected, the data will be stored locally. If the user is connected, the application will then test                 
for a network connection and provide a notification that it is ready to send information. 
 
The application will be developed using the Ionic framework which is used for creating mobile               
applications. Ionic uses multiple programming languages including TypeScript, HTML, and          
CSS. The server will use a parser to load a given ontology, and the application will connect to a                   
Flask Microservice which will provide it with the hierarchy necessary to generate the interface. 
 
Progress made since specification report includes planning implementation details based upon           
high, medium, and detailed design requirements. Progress was also made on the back-end             
towards parsing the ontology for specific aspects that can then be used to generate a hierarchy for                 
the front-end. 
  
Significant changes or updates to the requirements since specification have included more            
specific implementation details such as utilizing SHA256 encryption for login, separating           
metadata and ontology servers, specifics on how the search and search results pages would be               

3 



handled, and adding extra functionality to a number of classes. A very important change was               
planning out the methods of creating a dynamically generated hierarchy page, rather than the              
assumptions of always having locations/sites. 
 
4. High-level and Medium-level design 
 
The NRDC QA Application is designed to communicate between a client and server. The QA               
Mobile Application will query JSON information from the server using the Ontology Manager.             
The Metadata Management Application handles the metadata directly, by submitting it to, and             
retrieving it from the database. Figure 1 illustrates this process in detail below.  
 

 
Fig 1. Client Server Block Diagram of the NRDC QA Application 

 
  

4 



The tables below contain the classes found within the NRDC QA Application. Each individual              
table contains functions that are described in greater detail as they pertain to the design. 
 

Table 1. A description of the class “About” 

Class: About 
Description:​ An about page. It populates the 
necessary information about the development team 
and loaded project 

getTeam() This function populates the information regarding 
the development team. 

getProject() This function will populate information regarding the 
current project attached to the verified user. 

 
 

Table 2. A description of the class “Home” 

Class: Home 

Description:​ The main page for the application. It 
displays notifications that updates have taken place 
and also displays the last site updated. It displays 
online status. 

getNotifications() 

This function will populate information on recent 
updates to the home page. It will display the 
number of updates that have taken place since the 
user last logged in. 

getOnlineStatus() 
This function will populate information on the 
current connection status. It will be denoted using a 
symbol for either “connected” or “disconnected.” 

syncService() 

A function called by a user pressing a 
synchronization button on the home screen. This 
function allows for the application to synchronize 
with the database 

displayLoadingStatus() 

This function visualizes the loading process on the 
home screen for the user by providing updates to 
the user on the loading process in the form of a 
progress bar with captions. 

getOT() Calls the flask service for a list of all organizational 
tiers and their parent-child relationships 

getDataFields() 

Calls the flask service for the characteristics of the 
tiers that will take the form of data fields in the 
application. This data is then stored in 
Characteristics. 

 
  

5 



 
Table 3. A description of the class “HierarchyManager” 

Class: HierarchyManager Description:​ Displays available hierarchical tiers 
according to the ontology assigned via login. 

getUserNavigation() 
Gathers hierarchical navigation data and populates 
the hierarchy manager page to display the 
appropriate level of navigation per user. 

getLowerTiers() 
This function gathers lower organizational tier 
information in order to structure pages following the 
broad location page. 

 
 

Table 4. A description of the class “Search” 

Class: Search 
Description:​ Queries the application for 
appropriate search items defined by the user that 
can be keywords, locations or objects. 

keywordSearch() 
Takes the user submitted information and checks 
against database to populate interface with similar 
results. 

locationSearch() Similar to keywordSearch() but checks against the 
locations available to the user. 

 
 

Table 5. A description of the class “SearchResults” 

Class: SearchResults 
Description:​ Populates a page based on items 
defined by the user that can be keywords, locations 
or objects. 

returnKeywordResults() 
Returns a populated list regarding information 
checked for when using the function 
keywordSearch() in the Search class. 

returnLocationResults() 
Returns a populated list regarding information 
checked for when using the function 
locationSearch() in the Search class. 

 
  

6 



 
Table 6. A description of the class “Login” 

Class: Login 
Description:​ Authenticates user login information 
and password to properly display information based 
on user credentials. 

checkUser() This function will check against the user’s login for 
validity. 

checkPassword() This function will check against the user’s password 
for validity. 

encryptData() 
This function will take in a string and encrypt it to 
using SHA256 encryption to ensure secure data 
transmission. 

 
 

Table 7. A description of the class “Updates” 

Class: Updates 
Description:​ A page that displays most recent 
update logs and allows the user to check for 
updates. 

checkOntologyUpdates() 
Performs a checksum against the ontology to check 
for changes and modify information stored within 
the application accordingly. 

checkVersionUpdates() Performs a version check to search for new 
iterations of the application. 

displayUpdates() 

Display a list of information below the update option 
with changes made following the updates that took 
place. In the event no updates took place, an option 
stating no updates available is displayed instead. 

 
 

Table 8. A description of the class “Settings” 

Class: Settings 
Description: ​A page that displays, holds and 
allows for the configuration of user settings, 
including accessibility, display, and more. 

getUserSettings() This function populates the user settings page with 
the current user settings. 

updatePreferences() This function updates the interface with user 
defined settings. 

 
 

  

7 



Table 9. A description of the class “DataValidation” 

Class: DataValidation 

Description:​ A class to hold validated data on the 
application. This class allows for validated user 
input to be saved if offline, and allows the user to 
send data when online. 

validataData() 

Checks the user entered information against the 
expected data types in the class Characteristics. 
This function copies over the data and deletes the 
information saved in Characteristics in order to 
allow the user to save validated data. 

displayValidationErrors() 

Returns which data was copied over successfully 
and which was not validated due to errors in the 
data. This information is populated on the page by 
highlighting successful fields in green and clearing 
them while highlighting unsuccessfully validated 
fields in red and keeping their information present in
the field. 

sendData() 
If the user is online, sends the data to 
JsonConversion to send data to the database. If the 
user is offline, keeps the user entered data local. 

 
 

Table 10. A description of the class “Parser” 

Class: Parser 

Description:​ Parses the ontology in order to 
determine data fields and hierarchical navigation. 
This class converts the parser results to JSON from 
XML and organizes this data to send to the 
interface. 

convertOntology() 
Converts the ontology XML file to JSON while 
parsing the data. The data is then stored in a graph 
to be organized. 

sortOntology() 

Sorts the ontology information into fields for easier 
reading. This includes gathering all organizational 
tiers, and linking characteristics to objects in the 
ontology such as sites or sensors. 

 
 

  

8 



Table 11. A description of the class “JsonConversion” 

Class: JsonConversion Description:​ A class to handle conversions of data 
types. 

convertGPS() Converts GPS coordinates to a format accepted by 
Json. This may include strings or integers. 

convertImage() Converts images to a format accepted by Json. 
This may include strings or integers. 

convertTimeSeriesFromJson() Converts a string provided in a query to date/time 
form for the application’s use 

convertTimeSeriesToJson() Converts time/date to a string accepted by Json. 

 
 

Table 12. A description of the class “Characteristics” 

Class: Characteristics 

Description:​ A class to hold data fields as wells as 
data entries. This class organizes ontology 
information for the front end. It works in tandem 
with the DataValidation class. 

gatherInput() 
This function will accept user input and organize the
data for later validation according to the 
corresponding data field. 

generateFields() This function will generate form fields based on the 
ontology assigned characteristics. 

 
Figure 2 is a class diagram and describes the relationship that each class has with one another. In                  
addition to the functions, the class diagram also displays the variables used by each class. The                
various diamonds and arrows notate the relationships the classes have with one another. The              
Parser class is not related to any other class because it derives from the back end while the rest of                    
the classes derive from the front end. 

9 



 
Fig 2. Class Diagram showing the relationship between critical classes in the application. 

 

10 



The main data structures utilized in the application's architecture include graphs, trees and a              
database. After parsing the ontology, the data gathered is stored within a graph. This graph is                
organized into a tree based upon relationships between the members of the graph and sent to the                 
front end of the application through a series of queries. Metadata collected by the application is                
then stored within a database. A database table detailing this data type is displayed in Figure 3. 

 
Fig 3. Database Table for the NRDC QA Application. Provided by Vinh Le and Connor Scully-Allison. 

  

11 



5. Detailed Design 
 
The following section describes the detailed design of the NRDC QA application. Figure 4              
shows the necessary steps necessary for the main front-end functionality to work. The first main               
point to take note of is that there are several functionalities that require internet access for                
initialization of the application. The second point to note is that there will be a hierarchy page,                 
which will be where the dynamic parts of the application will be generated using the ontology.  
 

 
Fig 4. Activity Diagram of the front-end user interface 

 
Figure 5 expands the login section of Figure 4, starting at the login page and continuing down to                  
where the Home Page is created. It shows the more detailed aspects acquiring the data necessary                
to generate the application, including login information, template generated from a pre-processed            
ontology, and the metadata gathered from the database. 
 

12 



 
Fig 5. Activity Diagram of the login and initialization process  

13 



Navigation simplicity is an important feature of the NRDC QA application. Figure 6 is a state                
diagram that describes the flow of the page navigation for the user when they use the NRDC QA                  
Application. The slide menu, search, and a hierarchy page that shows only the current section               
being used for data entry are the key features used to simplify navigation. In the state diagram,                 
each transition is a button press of some object, and each state is a page. Each state describes                  
what is shown on that page. 
 

Fig 6. A State Diagram showing the application’s page navigation. 
 

The back-end utilizes several Flask services that are used for functions such as connecting to the                
database and storing metadata. Figure 7 is a state diagram that describes the functionality of a                
back-end FLASK service which is specifically designed to assist the front-end with dynamic             
page generation. It parses the ontology and creates a design template that it provides to the                
front-end application. Python has several tools that make the use of ontologies easier, and as a                
service, allows the parsing process to be done in a more efficient and compartmentalized way.  

14 



 
Fig 7. State diagram of a back-end FLASK service for parsing ontologies. 

 
6. Initial hardware design (optional) 
 
Does not apply to current project.  

15 



7. User interface design 
 
The following three pages show the NRDC QA application interface designs. Figures 8 and 9 are                
the login and welcome views. Figures 10 and 11 display the “hamburger” menu and locations               
views. Figures 12 and 13 show the new and existing location views. Figures 14 and 15 are the                  
updates and settings views. Figures 16 and 17 are the new search and search results view. The                 
combination of these views gives a preliminary expectation for the design. Figure 18 shows the               
accordion menu that unfolds when changing sub settings. Figure 19 displays the update logs and               
its current contents. 
 

 
Fig 8. The login screen the user sees when they open 

the application. 

 
Fig 9. The screen the user sees after they login. 

16 



 
Fig 10. The “hamburger” menu that appears when the 
user accesses the menu button on the navigation bar. 

  
Fig 11. The locations screen that the user will use to 

navigate their permitted sites.  

 
Fig 12. An existing location screen that will display a 

user image and filled data fields​. 

 
Fig 13. A new locations page that can allow for the 

addition of new sites. It contains a field for data and a 
user image. 

17 



 
Fig 14. The updates screen will offer information 

regarding changes. 

 
Fig 15. The settings screen that will allow a variety of 

user defined settings. 

 
Fig 16. The new search screen that the user can access 

by selecting the magnifying glass on the navigation bar. 

 
Fig 17. The search results screen that will display 

results from the users inquiry. 

18 



 
Fig 18. The submenu that will display available options 

when selecting from settings menu. 

 
Fig 19. The updates log which will display the various 

changes and fixes for each build, every time the 
program is updated. 

 
 

  

19 



8. Glossary 
1. Angular​: An open-source framework for building web applications. It is based on            

Javascript. 
2. API​: Application program interface allows two software programs to communicate with           

one another. 
3. Big Data​: A large volume of structured or unstructured data that can be analyzed for               

patterns, trends, and associations. 
4. Database​: An organized collection of data designed to be easily accessed, managed and             

updated. 
5. Discord​: A chat room service and the main method of communication utilized during             

development. 
6. Endpoint​: A hardware device on a network designed to interconnect devices on the             

internet. 
7. Environmental Science​: The branch of biology concerned with the study of the natural             

world, including the conditions of the environment and the effects of these conditions on              
organisms. 

8. Flask Service​: A micro framework for Python used for managing website requests            
through HTTP with no data abstraction. 

9. GPS​: Global Positioning System used to find location data at any time of day in any                
weather conditions, using a radio navigation system. 

10. Graph​: An abstract data type used to define mathematical concepts and relations between             
objects through ordered pairs, nodes, and edges. 

11. Hierarchical Navigation​: The ability to navigate a website based on its organized            
structure that ranks items into levels of importance or relations. 

12. In-situ Research​: Researched performed on site, allowing data to be collected without            
altering test conditions and without isolating measurements taken from the effects of            
other systems. In-situ Research is also a service specializing in training and assisting in              
mixed-methods. 

13. Ionic​: A platform for building mobile, desktop and web applications. 
14. Metadata​: A dataset used to describe other data. 
15. Microframework​: A minimalistic web application framework that lacks most of the           

functionality expected from a web application. 
16. Nevada EPSCoR​: A part of the Nevada System of Higher Education concerned with             

multidisciplinary learning within science, research, education, and technology. 
17. NEXUS​: A project under Nevada EPSCoR concerned with the effects of Solar Energy on              

the environment of Nevada. This is the most recent project under Nevada EPSCoR and              
the affiliation of the main group of technicians that would be utilizing the application. 

18. NRDC​: A research center concerned with sensor-based data management, and improving           
research cyberinfrastructure. 

20 



19. Ontology​: A standard for the abstraction of data models in order to define the categories,               
properties and relations between data and entities . 

20. Parser​: A program, usually part of a compiler or interpreter, that breaks data into smaller               
elements for data management. 

21. RESTful​: A web service based on stateless operation that allow the requesting device to              
access and manipulate web resources through a textual representation. 

22. Server​: A program designed to provide services to other computer programs and its users. 
23. Trello​: A project management service designed to allow managers to turn large iterations             

into tasks and mark them as not started, in progress, and completed. 
24. Triple Query​: A request for information or data composed of subject-predicate-object. 
25. XML​: A language to define rules to encode documents. The format is designed to be               

easily readable by both humans and machines. 
 
9. Contributions of Team Members 
 

● Brianna Blain-Castelli 
○ Contributions 

■ 0. Cover Page 
■ 4. High-level and Medium-level design 
■ 8. Glossary 
■ Extra Contributions  

○ Time Worked: 13 hours 
● Christopher Eichstedt 

○ Contributions 
■ 3. Introduction 
■ 4. High-level and Medium-level design 
■ 7. User Interface Design 
■ Extra Contributions 

○ Time Worked: 11 hours 
● Matthew Johnson 

○ Contributions 
■ 1.Table of Contents 
■ 3. Introduction 
■ 2. Abstract 
■ 5. Detailed Design 
■ 7. User Interface Design 
■ Extra Contributions 

● Helped create Class outputs in part 4. 
○ Time Worked: 14 hours  

21 



● Nicholas Jordy 
○ Contributions 

■ 2. Abstract 
■ 5. Detailed Design 
■ 9. Team Contributions 
■ Extra Contributions 

● Formatting of tables and figures 
○ Time Worked: 12.5 hours 

 
 
 

22 


