

Computer Science and Engineering
University of Nevada, Reno

NRDC Quality Assurance Application

Team 9:
Brianna Blain-Castelli
Christopher Eichstedt

Matthew Johnson
Nicholas Jordy

Instructors:
 Dr. Sergiu Dascalu

Devrin Lee

External Advisors:
Connor Scully-Allison

Vinh Le

 ​2/22/19

1. Table of Contents

2. Abstract
3. Recent Project Changes
4. Updated Specification

4.1. Summary of changes in project specification
4.2. Updated technical requirements specification
4.3. Updated Use Case Modeling

5. Updated Design
5.1. Summary of Changes in Project Design
5.2. Updated High-Level and Medium-Level Design
5.3. Updated Hardware Design
5.4. Update User Interface Design

6. Glossary
7. Standards and Technologies
8. Updated List of References
9. Contributions of Team Members

2
2

2-7
2

3-4
4-7

7-21
7

8-15
15

16-21
22-23

24
25-27
27-28

1

2. Abstract
The NRDC QA Application is a cross-platform mobile and web application. It is
designed as a generalized, user-facing tool for recording metadata, but with a more
specific goal of aiding NEXUS site technicians for better efficiency in the field. After a
technician has stored their findings, a real-time representation of the data is recorded by
saving the information to an offline device until an online connection is made. All
information is stored using a database connection to send and receive metadata, that is
then displayed using dynamic hierarchical navigation. ​The current process has NEXUS
site technicians physically recording data in notebooks before transferring it to a central
database. This document outlines the changes and updates to the specifications and
design.

3. Recent Project Changes

There are no recent changes that have been made.

4. Updated Specification
4.1 Summary of changes in project specification

Some functional requirements have been reorganized and have had their tier changed
according to the updated technical requirements specification. This is due in part to time
restrictions, as well as coordination of core features that are necessary for deployment.

2

4.2 Updated technical requirements specification
Table 1. Updated Functional Requirements for the NRDC QA Application.

Functional Requirements

Requirement ID Level Description

FR1 1 The application shall use an ontology to populate the data fields.

FR2 1
The application shall allow the user to interact with the populated data
fields.

FR3 1 The application shall allow the user to edit site information.

FR4 1 The application shall type check data entered into the data fields.

FR6 1 The application shall allow the user to view site information without editing

FR7 1
The application shall allow the user to navigate through nested
hierarchical pages.

FR8 1
The application shall allow the user to store data for later submission
when an internet connection is established.

FR9 1
The application shall allow the user to retrieve GPS information from the
mobile device for use in data entry.

FR10 1 The application shall allow the user to upload images to the site.

FR11 1 The application shall query data from a flask service.

FR5 2
The application shall allow the user to login with a username and
password.

FR13 2
The application shall require validation from the user before they upload
data.

FR20 2 The application shall allow the user to manage conflicts of information

FR22 2 The application shall allow the user to upload and store document files.

FR12 3
The application shall notify the user when they can synchronize their
data.

FR14 3
The application shall allow administrators to change administrator
information.

FR15 3 The application shall allow the user to navigate using a search function.

FR16 3 The application will have multiple steps for data verification.

FR17 3
The application will highlight incorrect information for the user after
checking that the data is correct.

FR18 3 The application shall be able to handle network timeouts.

FR19 3
The application shall display loading progress as it synchronizes with the
database.

FR21 3 The application shall email the user when data is synchronized.

3

Table 2. Non-functional requirements for the NRDC QA Application

Non-Functional Requirements

Requirement ID Description

NFR1 The application shall be created using the Ionic Framework.

NFR2
The application’s front-end user interface shall be coded in
TypeScript.

NFR3 The application's back-end parsing of the ontology shall be coded in Python.

NFR4 The application shall use a simple, intuitive user interface.

NFR5 The application shall be compatible with both Android and iOS.

NFR6 The application shall have an alternative web page interface.

NFR7
The application shall be deployed using Cordova built into the.
Ionic Framework.

NFR8 The application shall utilize RESTful APIs via FLASK services.

NFR9 The application shall read an ontology in RDFS/XML format.

Table 1 describes the functional requirements of the NRDC QA Application. Level 1
requirements are must have. Level 2 are should have, and Level 3 are could have or want
to have. Table 2 describes the non-functional requirements of the application.

4.3 Updated Use Case Modelling

4.3.1 Updated Use Case Model
The following section outlines the high level requirements as seen from a user
perspective. Figure 1 displays the requirements that an outside entity (the Sensor
Technician) will interact with.

4

Fig1. The Use Case Diagram for the NRDC QA Application

Table ?. Use Cases for the NRDC QA Application

5

4.3.2 Updated Use Case Table

Table 3: The use cases for the NRDC QA application

6.1 Use Cases

ID Use Case Description

UC01 UploadImage
The user shall be able to upload an image that will be
displayed on the individual site screen.

UC02 UploadLocationData

The user shall be able to pull their GPS location and
have this information immediately added to the
necessary data fields.

UC03 SubmitData

The user can save data without internet connection and
submit data when connection is made, by user request,
following a verification process for the data and
submission.

UC04 EditData
The user shall be able to edit data based upon user
privileges.

UC05 ValidateData
The user shall enter data into the system which will then
be checked that it meets specifications.

UC06 ReadData
The user shall be allowed to read site and sensor
information.

UC07 GenerateHierarchy
The user will select an ontology to parse into an
appropriate hierarchy that will be used by the application.

UC08 GenerateInterface

When a user opens a page the application will get the
appropriate section of the hierarchy and dynamically
generate and interface based upon the hierarchy.

UC09 NavigateInterface

The user shall be able to navigate an interface via a
search for by navigating through a hierarchy from the
ontology.

UC10 LoginAsUser

The user is required to enter their username and
password upon starting that application before being
granted permissions to view the rest of the application.

Table 3 describes the use cases for the NRDC QA application. Each case is an interaction
that a user or that a part of the system has with the application.

4.3.3 Updated Traceability Matrix

Figure 5 displays the relationships between the use cases and functional requirements.
The rows are the functional requirements and the columns are the use cases

6

 UC01 UC02 UC03 UC04 UC05 UC06 UC07 UC08 UC09 UC10

FR1

FR2

FR3

FR4

FR5

FR6

FR7

FR8

FR9

FR10

FR11

FR12

FR13

FR14

FR15

FR16

FR17

FR18

FR19

FR20

FR21

FR22

Fig 2. The Requirement Traceability Matrix

5. Updated Design
5.1 Summary of Changes in Project Design

User interface has seen a considerable number of changes as its design and logic
continues to evolve. All decisions were at either advisement of the stakeholders for
readability, or creative design choices. The included design is subject to change before
final release.

7

5.2 Updated High-Level and Medium-Level Design
5.2.1 Updated High-Level Design

Figure ? details interaction that occurs between client and server. Indicated below is the
detailed functionality regarding sending and receiving data from both the database and
ontology service.

Fig 3: Diagram of of the architectural design of the application

5.2.2 Class Descriptions

The tables below contain the classes found within the NRDC QA Application. Each
individual table contains functions that are described in greater detail as they pertain to
the design.

Table 4. A description of the class “About”

Class: About
Description: An about page. It populates the
necessary information about the development team
and loaded project

getTeam() This function populates the information regarding
the development team.

getProject() This function will populate information regarding the
current project attached to the verified user.

8

Table 5. A description of the class “Home”

Class: Home

Description:​ The main page for the application. It
displays notifications that updates have taken place
and also displays the last site updated. It displays
online status.

getNotifications()

This function will populate information on recent
updates to the home page. It will display the
number of updates that have taken place since the
user last logged in.

getOnlineStatus()
This function will populate information on the
current connection status. It will be denoted using a
symbol for either “connected” or “disconnected.”

syncService()

A function called by a user pressing a
synchronization button on the home screen. This
function allows for the application to synchronize
with the database

displayLoadingStatus()

This function visualizes the loading process on the
home screen for the user by providing updates to
the user on the loading process in the form of a
progress bar with captions.

getOT() Calls the flask service for a list of all organizational
tiers and their parent-child relationships

getDataFields()

Calls the flask service for the characteristics of the
tiers that will take the form of data fields in the
application. This data is then stored in
Characteristics.

Table 6. A description of the class “HierarchyManager”

Class: HierarchyManager Description:​ Displays available hierarchical tiers
according to the ontology assigned via login.

getUserNavigation()
Gathers hierarchical navigation data and populates
the hierarchy manager page to display the
appropriate level of navigation per user.

getLowerTiers()
This function gathers lower organizational tier
information in order to structure pages following the
broad location page.

9

Table 7. A description of the class “Search”

Class: Search
Description:​ Queries the application for
appropriate search items defined by the user that
can be keywords, locations or objects.

keywordSearch()
Takes the user submitted information and checks
against database to populate interface with similar
results.

locationSearch() Similar to keywordSearch() but checks against the
locations available to the user.

Table 7. A description of the class “SearchResults”

Class: SearchResults
Description:​ Populates a page based on items
defined by the user that can be keywords, locations
or objects.

returnKeywordResults()
Returns a populated list regarding information
checked for when using the function
keywordSearch() in the Search class.

returnLocationResults()
Returns a populated list regarding information
checked for when using the function
locationSearch() in the Search class.

Table 8. A description of the class “Login”

Class: Login
Description:​ Authenticates user login information
and password to properly display information based
on user credentials.

checkUser() This function will check against the user’s login for
validity.

checkPassword() This function will check against the user’s password
for validity.

encryptData()
This function will take in a string and encrypt it to
using SHA256 encryption to ensure secure data
transmission.

10

Table 9. A description of the class “Updates”

Class: Updates
Description:​ A page that displays most recent
update logs and allows the user to check for
updates.

checkOntologyUpdates()
Performs a checksum against the ontology to check
for changes and modify information stored within
the application accordingly.

checkVersionUpdates() Performs a version check to search for new
iterations of the application.

displayUpdates()

Display a list of information below the update option
with changes made following the updates that took
place. In the event no updates took place, an option
stating no updates available is displayed instead.

Table 10. A description of the class “Settings”

Class: Settings
Description: ​A page that displays, holds and
allows for the configuration of user settings,
including accessibility, display, and more.

getUserSettings() This function populates the user settings page with
the current user settings.

updatePreferences() This function updates the interface with user
defined settings.

11

Table 11. A description of the class “DataValidation”

Class: DataValidation

Description:​ A class to hold validated data on the
application. This class allows for validated user
input to be saved if offline, and allows the user to
send data when online.

validataData()

Checks the user entered information against the
expected data types in the class Characteristics.
This function copies over the data and deletes the
information saved in Characteristics in order to
allow the user to save validated data.

displayValidationErrors()

Returns which data was copied over successfully
and which was not validated due to errors in the
data. This information is populated on the page by
highlighting successful fields in green and clearing
them while highlighting unsuccessfully validated
fields in red and keeping their information present in
the field.

sendData()
If the user is online, sends the data to
JsonConversion to send data to the database. If the
user is offline, keeps the user entered data local.

Table 12. A description of the class “Parser”

Class: Parser

Description:​ Parses the ontology in order to
determine data fields and hierarchical navigation.
This class converts the parser results to JSON from
XML and organizes this data to send to the
interface.

convertOntology()
Converts the ontology XML file to JSON while
parsing the data. The data is then stored in a graph
to be organized.

sortOntology()

Sorts the ontology information into fields for easier
reading. This includes gathering all organizational
tiers, and linking characteristics to objects in the
ontology such as sites or sensors.

12

Table 13. A description of the class “JsonConversion”

Class: JsonConversion Description:​ A class to handle conversions of data
types.

convertGPS() Converts GPS coordinates to a format accepted by
Json. This may include strings or integers.

convertImage() Converts images to a format accepted by Json.
This may include strings or integers.

convertTimeSeriesFromJson() Converts a string provided in a query to date/time
form for the application’s use

convertTimeSeriesToJson() Converts time/date to a string accepted by Json.

Table 14. A description of the class “Characteristics”

Class: Characteristics

Description:​ A class to hold data fields as wells as
data entries. This class organizes ontology
information for the front end. It works in tandem
with the DataValidation class.

gatherInput()
This function will accept user input and organize the
data for later validation according to the
corresponding data field.

generateFields() This function will generate form fields based on the
ontology assigned characteristics.

Figure 4 is a class diagram and describes the relationship that each class has with one
another. In addition to the functions, the class diagram also displays the variables used by
each class. The various diamonds and arrows notate the relationships the classes have
with one another. The Parser class is not related to any other class because it derives from
the back end while the rest of the classes derive from the front end.

13

Fig 4. Class Diagram showing the relationship between critical classes in the application.

14

5.2.3 Data Structures
The main data structures utilized in the application's architecture include graphs, trees
and a database. After parsing the ontology, the data gathered is stored within a graph.
This graph is organized into a tree based upon relationships between the members of the
graph and sent to the front end of the application through a series of queries. Metadata
collected by the application is then stored within a database. A database table detailing
this data type is displayed in Figure ?.

Fig 5. Database Table for the NRDC QA Application. Provided by Vinh Le and Connor Scully-Allison.

5.3 Updated Hardware Design

As there is no hardware component, the hardware design has not been changed.

15

5.4 Updated User Interface Design
Minor changes have been made to the NRDC QA application during the course of its
development. Although it is currently presentable, these screenshots do not reflect the
final design, as it is undergoing further changes.

Figures 6 and 7 show the login screen and home screen, which are the most prominent
screens in the application. They are the first indication of the application’s visual theme.

Fig 6. The login screen the user sees when they open

the application.

Fig 7. The home screen the user sees after they login.

16

Figure 8 shows the hamburger menu which is the primary method of navigation in the
application. Figure 9 presents a small screen capture from the about page linked from the
hamburger menu.

Fig 8. The “hamburger” menu that appears when the

user presses the navigation menu button.

Fig 9. The about page that gives information about the

people behind the application’s creation.

17

The main functionality of the application is seen in Figures 10 through 14. The screenshots
show how the program displays the dynamic via the Metadata Entry page. As the user chooses
items from the menus, the page then shows the sub-items of what was selected. More details
for each selection are accessed easily by the edit link at the bottom of the list. Figure 15 is the
current version of the settings screen, where the manually toggling between offline and online
modes is possible.

Fig 10. The hierarchical navigation display created

from an ontology.

Fig 11. Another navigation display showing how

application traverses and filters the data based on the
ontology.

18

Fig 12. The view of the a bottom level item in the

hierarchy (a “component”).

Fig 13. The edit view showing details of the component

that is loaded from a database, including a photo.

19

Fig 14. A menu showing interaction settings a user can

use to add an image to the data.

Fig 15. The settings screen that has an offline/online

setting and will allow a variety of user defined settings.

20

Below, figures 16 and 17 help demonstrate the application’s cross-platform capabilities by
demonstrating a browser view of the application as deployed on a website.

Fig 16. A website version of the details view from application shows its multi-platform capabilities.

Fig 17. The hierarchy view as seen from the website build.

21

6. Glossary
1. Angular​: An open-source framework for building web applications. It is based on

Javascript.
2. API​: Application program interface allows two software programs to communicate with

one another.
3. Big Data​: A large volume of structured or unstructured data that can be analyzed for

patterns, trends, and associations.
4. Database​: An organized collection of data designed to be easily accessed, managed and

updated.
5. Discord​: A chat room service and the main method of communication utilized during

development.
6. Endpoint​: A hardware device on a network designed to interconnect devices on the

internet.
7. Environmental Science​: The branch of biology concerned with the study of the natural

world, including the conditions of the environment and the effects of these conditions on
organisms.

8. Flask Service​: A micro framework for Python used for managing website requests
through HTTP with no data abstraction.

9. GPS​: Global Positioning System used to find location data at any time of day in any
weather conditions, using a radio navigation system.

10. Graph​: An abstract data type used to define mathematical concepts and relations between
objects through ordered pairs, nodes, and edges.

11. Hierarchical Navigation​: The ability to navigate a website based on its organized
structure that ranks items into levels of importance or relations.

12. In-situ Research​: Researched performed on site, allowing data to be collected without
altering test conditions and without isolating measurements taken from the effects of
other systems. In-situ Research is also a service specializing in training and assisting in
mixed-methods.

13. Ionic​: A platform for building mobile, desktop and web applications.
14. Metadata​: A dataset used to describe other data.
15. Microframework​: A minimalistic web application framework that lacks most of the

functionality expected from a web application.
16. Nevada EPSCoR​: A part of the Nevada System of Higher Education concerned with

multidisciplinary learning within science, research, education, and technology.
17. NEXUS​: A project under Nevada EPSCoR concerned with the effects of Solar Energy on

the environment of Nevada. This is the most recent project under Nevada EPSCoR and
the affiliation of the main group of technicians that would be utilizing the application.

18. NRDC​: A research center concerned with sensor-based data management, and improving
research cyberinfrastructure.

22

19. Ontology​: A standard for the abstraction of data models in order to define the categories,
properties and relations between data and entities .

20. Parser​: A program, usually part of a compiler or interpreter, that breaks data into smaller
elements for data management.

21. RESTful​: A web service based on stateless operation that allow the requesting device to
access and manipulate web resources through a textual representation.

22. Server​: A program designed to provide services to other computer programs and its users.
23. Trello​: A project management service designed to allow managers to turn large iterations

into tasks and mark them as not started, in progress, and completed.
24. Triple Query​: A request for information or data composed of subject-predicate-object.
25. XML​: A language to define rules to encode documents. The format is designed to be

easily readable by both humans and machines.

23

7. Standards and Technologies
The table below describes the various technologies and standards used for development of the
application. Included are their descriptions and their use in the project.

Table 15. A table of the standards and technologies used for development of the application

Name Description Type Use in Project

Flask Micro framework
based in Python and
others.

Technology Web Service used to
parse the ontology.

Ionic Open source software
development kit for
cross platform
applications.

Technology Framework used to
build application.

HTML5 Hypertext Markup
Language for
building websites.

Standard Defines application
pages.

CSS Cascading Style
Sheets used for
presentation of a
document in HTML.

Technology Defines user interface
of the application.

Typescript Microsoft developed
superset of
JavaScript.

Technology Defines the
functionality of the
application.

Python General purpose
programming
language compiled
using an interpreter.

Technology Used in development
of the back end Flask
Web Service.

UML Unified Modeling
Language used to
plan application
development.

Standard Used in past
assignments to better
visually develop
system architecture.

NodeJS JavaScript runtime
environment allowing
use without a
browser.

Technology Allows application to
run outside of
browser.

24

8. Updated List of References
​8.1 Problem Domain Book
1. Singh, Indermohan, and Hoc Phan. ​Ionic Cookbook: Recipes to Create Cutting-Edge,

Real-Time Hybrid Mobile Apps with Ionic​. 3rd ed., Packt Publishing, 2018.

A book that has tutorials on how to create hybrid applications using Ionic,
Angular, and Cordova. The tutorials include basic sections such as creating
themes as well as more advanced sections such as using the REST API, lazy
loading, and deep linking.

8.2 Project Reference Articles
1. Catenazzi, Nadia & Sommaruga, Lorenzo & Mazza, Riccardo. (2009). “User-Friendly

Ontology Editing and Visualization Tools: The OWLeasyViz Approach.” 283-288.
10.1109/IV.2009.34.
www.researchgate.net/publication/221360225_User-Friendly_Ontology_Editing_and_
Visualization_Tools_The_OWLeasyViz_Approach (Oct. 30, 2018).

A conference paper that explores different methods and tools used to visually
display an ontology. Primarily, the paper explores the usability and
functionality of several web browser plug-ins and a web-based tool before
presenting its own conceptualization of a standalone application for
visualizing ontologies.

2. McCarthy, J.L. “METADATA MANAGEMENT FOR LARGE STATISTICAL
 DATABASES.” Lawrence Berkeley National Laboratory, 1 Mar. 1982,
 cloudfront.escholarship.org/dist/prd/content/qt5cc031cm/qt5cc031cm.pdf (Oct. 30,

2018).

A paper explaining the differences between data and metadata and detailing
what metadata is, such as its types, uses, and characteristics. It also explains
some of the requirements necessary to properly manage metadata. Specifically,
it talks about the problems and proposed solutions to the metadata issues that
have arisen with SEEDIS.

25

3. Scully-Allison, Connor, et. al. “Advancing Quality Assurance Through Metadata
 Management: Design and Development of a Mobile Application for the NRDC.”
 1 Mar. 2018,
www.cse.unr.edu/~fredh/papers/journal/61-aqatmmdadoamaftn/paper.pdf (Oct. 30,
2018).

A research paper that details the previous version of the application being
developed. It details the previous versions specifications such as its use cases,
its architectural design, and its UI design. It also describes the application’s
general impact and impact for the NRDC.

4. ​McGuinness, Deborah L., and Frank Van Harmelen. "OWL web ontology language
overview." ​W3C recommendation ​10.10 (2004).
www.researchgate.net/publication/200034408_OWL_Web_Ontology_Language---Ov
erview (Feb. 21. 2019).

This paper outlines the design of the Web Ontology Language (OWL) and how
one is built using the Resource Description Framework (RDF) Schema. Also in
the paper is a description of what makes OWL useful as well as a detailed
breakdown of all of the language features.

8.3 Project Related Websites
1. ​W3C. ​OWL Web Ontology Language Parsing OWL in RDF/XML​,

www.w3.org/TR/2004/NOTE-owl-parsing-20040121/ (Oct. 30, 2018).

A web standards organization’s web page outlining how one might construct
an OWL ontology by parsing the triples in an RDF/XML file. It thoroughly
details steps one needs to take to translate the structures presented in the RDF
file as well as how to handle certain errors that are likely to arise.

2. ​Fredrich, Todd and Pearson Corp. “Learn REST: A RESTful Tutorial.” ​REST API

Tutorial​,
www.restapitutorial.com/ ​(Oct. 30, 2018)​.

An educational website that explains what Representational State Transfer
(REST) is and what is needed to know to design a REST API. It includes an
introductory tutorial video, explanations of terms, and explains how to use
RESTful web services using http.

26

3. Ionic. “Ionic Platform Documentation.” ​Ionic Framework​,
 ionicframework.com/docs/ (Oct. 30, 2018).

The online documentation for the Ionic Framework that very thoroughly
covers the many features of Ionic such as the API, themes, components, and its
command line interface. It also gives code examples and provides links to
outside resources that may be useful to developers.

4. NRDC “Nevada Research Data Center.” ​NRDC,

 sensor.nevada.edu/ (Nov. 2, 2018).

The Nevada Research Data Center website offers an overview of their data
services and ongoing projects. The data services branch offers geospatial data,
video streams, image archives and current weather conditions for listed
locations. The ongoing projects branch redirects the user to the project’s
respective website.

9. Contributions of Team Members

Brianna Blain-Castelli

● Cover Page
● Table of Contents
● Abstract
● Recent Project Changes
● Updated Specification
● Updated Design
● Glossary
● Standards of Technologies
● Updated Lists of References
● Total: 6.00 hours

Christopher Eichstedt:

● Cover Page
● Table of Contents
● Abstract
● Recent Project Changes
● Updated Specification
● Updated Design
● Glossary

27

● Standards of Technologies
● Updated Lists of References
● Total: 6.00 hours

Matthew Johnson:

● Cover Page
● Table of Contents
● Abstract
● Recent Project Changes
● Updated Specification
● Updated Design
● Glossary
● Standards of Technologies
● Updated Lists of References
● Total: 6.00 hours

Nicholas Jordy:

● Cover Page
● Table of Contents
● Abstract
● Recent Project Changes
● Updated Specification
● Updated Design
● Glossary
● Standards of Technologies
● Updated Lists of References
● Total: 6.00 hours

28

